skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luepker, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Black holes can launch powerful jets through the Blandford–Znajek process. This relies on enough plasma in the jet funnel to conduct the necessary current. However, in some low-luminosity active galactic nuclei, the plasma supply near the jet base may be an issue. It has been proposed that spark gaps—local regions with unscreened electric field—can form in the magnetosphere, accelerating particles to initiate pair cascades, thus filling the jet funnel with plasma. In this paper, we carry out 2D general relativistic particle-in-cell (GRPIC) simulations of the gap, including self-consistent treatment of inverse Compton scattering and pair production. We observe gap dynamics that is fully consistent with our earlier 1D GRPIC simulations. We find strong dependence of the gap power on the soft photon spectrum and energy density, as well as the strength of the horizon magnetic field. We derive physically motivated scaling relations, and applying to M87, we find that the gap may be energetically viable for the observed TeV flares. For Sgr A*, the energy dissipated in the gap may also be sufficient to power the X-ray flares. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026